
RADIOLOGICAL HEALTH HANDBOOK

Compiled and edited
by the
Bureau of Radiological Health
and the
Training Institute
Environmental Control Administration

Revised Edition January 1970

U.S. DEPARTMENT OF HEALTH, EDUCATION, AND WELFARE
Public Health Service
Consumer Protection and Environmental Health Service
Rockville, Maryland 20852

REPRODUCED BY
NATIONAL TECHNICAL
INFORMATION SERVICE
U.S. DEPARIMENT OF COMMERCE
SPRINGFIELD, VA. 22161

Nuclide	Historical name	Half-life 4.51x10 ⁹ y	Major radiation energies (MeV) and intensities†				
			α	β	Ϋ́		
292 U	Uranium I		4.15 (25%) 4.20 (75%)				
² 34Th ·	Uranium X ₁	24.1d		0.103 (21%) 0.193 (79%)	0.063c‡ (3.5%) 0.093c (4%)		
234Pa ^m 99.87% 0.13%	Uranium X ₂	1.17m		2.29 (98%)	0.765 (0.30%) 1.001 (0.60%)		
234Pa	Uranium Z	6.75h	60 No 60	0.53 (66%) 1.13 (13%)	0.100 (50%) 0.70 (24%) 0.90 (70%)		
≥34 U 	Uranium II	2.47×10 ⁵ y	4.72 (28%) 4.77 (72%)		0.053 (0.2%)		
²§6Th ↓	Ionium	8.0 ×10 ⁴ y	4.62 (24%) 4.68 (76%)		0.068 (0.6%) 0.142 (0.07%)		
286Ra ⊌	Radium	1602y	4.60 (6%) 4.78 (95%)		0.186 (4%)		
es ² Rn	Emanation Radon (Rn)	3.823d	5.49 (100%)		0.510 (0.07%)		
99.98% 0.02%	Radium A	3.05m	6.00 (~100%)	0.33 (~0.019%)			
214Pb	Radium B	26.8m		0.65 (50%) 0.71 (40%) 0.98 (6%)	0.295 (19%) 0.352 (36%)		
218 At	Astatine	~2s	6.65 (6%) 6.70 (94%)	? (~0.1%)			
99.98% 0.02%	Radium C	19.7m	5.45 (0.012%) 5.51 (0.008%)	1.0 (23%) 1.51 (40%) 3.26 (19%)	0.609 (47%) 1.120 (17%) 1.764 (17%)		
idPo	Radium C'	164µs	7.69 (100%)		0.799 (0.014%)		
alo T1	Radium C"	1.3m		1.3 (25%) 1.9 (56%) 2.3 (19%)	0.296 (80%) 0.795 (100%) 1.31 (21%)		
elopb	Radium D	21y	3.72 (.000002%)	0.016 (85%) 0.061 (15%)	0.047 (4%)		
~100% .00013%	Radium E	5.01d	4.65 (.00007%) 4.69 (.00005%)	1.161 (~100%)			
Po	Radium F	138.4d	5.305 (100%)		0.803 (0.0011%)		
aps T1	Radium E"	4.19m		1.571 (100%)			
² 05Pb	Radium G	Stable					

^{*}This expression describes the mass number of any member in this series, where n is an integer.

Example: 30.6 Pb (4n + 2)......4(51) + 2 = 206

*Intensities refer to percentage of disintegrations of the nuclide itself, not to original parent of series.

Complex energy peak which would be incompletely resolved by instruments of moderately low resolving power such as scintillators.

Data taken from: Table of Isotopes and USNRDL-TR-802.

Thick	Approximate Weight	
mm	mm in.	
0.79 1.00 1.19 1.58 1.98 2.38 3.17 4.76 6.35 8.50 10.1 12.7 16.9 25.4	1/328 5/128 1/4664 1/4664 1/4 1/3/5 1/4 1/3/5 1/2/3 1	1b/ft ² 2 2 ¹ / ₂ 3 4 5 6 8 12 16 20 24 30 40 60

Source: Medical X-Ray Protection up to Three Million Volts (NBS Handbook No. 76 [Washington, D.C.: Supt. of Docs., U.S. Government Printing Office, Feb. 1961]), p. 30.

Thickness of Lead Required to Reduce
Useful Beam to 5 Percent^a

		·
Beam Q	Required	
	Half Value	Lead
Potential	Layer	Thickness
	(mm)	(mm)
60 kVp	1.2 A1	0.10
100 kVp	1.0 A1	0.16
100 kVp	2.0 A1	0.25
100 kVp	3.0 A1	0.35
140 kVp	0.5 Cu	0.7
200 kV _P	1.0 Cu	1.0
250 kVp	3.0 Cu	1.7
400 kVp	4.0 Cu	2.3
1000 kVp	3.2 Pb	20.5
. 2000 kVp	6.0 Pb	43.0
2000 kVcp	14.5 Pb	63.0
3000 kVcp	16.2 РЬ	70.0
6000 kV	17.0 РЬ	74.0
8000 kV	15.5 Pb	67.0
Cobalt 60	10.4 Pb	47.0

Approximate values for broad beams. Transmission data for brass, steel and other material for potentials up to 2000 kVp may be found in reference [15]. Measurements on 1000 kVp and 2000 kVp made with resonant-type therapy units. Data for 6000 kV taken from reference [16], for a linear accelerator. Data for 2000 kVcp, 3000 kVcp, and 8000 kV derived by interpolation from graph presented in reference [17]. The third column refers to lead or to the required equivalent lead thickness of lead-containing materials (e.g. lead rubber, lead glass, etc.).

Source: Medical X-Ray and Gamma-Ray Protection for Energies up to 10 MeV (NCRP Report No. 33
[Washington, D.C.: National Council on Radiation Protection and Measurements, Feb. 1968]), p. 45.

CONCRETE* EQUIVALENTS (mm) OF LEAD AT DIFFERENT X-RAY TUBE POTENTIALS

Lead	Tube Potential				
Thickness (mm)	150 kVp 200 kVp		[.] 300 kVp	400 kVp	
1 2 3 4 6 8 10	80 150 220 280 	75 140 200 260 	56 89 117 140 200 240 280	47 70 94 112 140 173 210 280	

^{*}Density 2.35 g/cm^3 .

IRON EQUIVALENTS (mm) OF LEAD AT DIFFERENT X-RAY TUBE POTENTIALS

Lead	Tube Potential						
Thickness (mm)	150 kVp	200 kVp	300 kVp	400 kVp	600 kVp	800 kVp	1000 kVp
1 2 3 4 6 8 10 15 20 50	11 25 37 50 	12 27 40 55 	12 20 28 35 48 60 75	11 18 23 28 38 45 55 75	10 16 19 23 30 36 42 55 70	9 14 17 20 26 31 36 48 60 125	8 13 16 18 23 28 32 43 55 110

Data for tables from NBS Handbook No. 50.